Exchangeability-type properties of asset prices

Author:

Molchanov Ilya,Schmutz Michael

Abstract

Let η = (η1,…,ηn) be a positive random vector. If its coordinates ηi and ηj are exchangeable, i.e. the distribution of η is invariant with respect to the swap πij of its ith and jth coordinates, then Ef(η) = Efijη) for all integrable functions f. In this paper we study integrable random vectors that satisfy this identity for a particular family of functions f, namely those which can be written as the positive part of the scalar product 〈u, η〉 with varying weights u. In finance such functions represent payoffs from exchange options with η being the random part of price changes, while from the geometric point of view they determine the support function of the so-called zonoid of η. If the expected values of such payoffs are πij-invariant, we say that η is ij-swap-invariant. A full characterisation of the swap-invariance property and its relationship to the symmetries of expected payoffs of basket options are obtained. The first of these results relies on a characterisation theorem for integrable positive random vectors with equal zonoids. Particular attention is devoted to the case of asset prices driven by Lévy processes. Based on this, concrete semi-static hedging techniques for multi-asset barrier options, such as weighted barrier swap options, weighted barrier quanto-swap options, or certain weighted barrier spread options, are suggested.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The robustness of the generalized Gini index;Decisions in Economics and Finance;2022-10-25

2. The maximum surplus in a finite‐time interval for a discrete‐time risk model with exchangeable, dependent claim occurrences;Applied Stochastic Models in Business and Industry;2018-11-13

3. Theory of Random Sets;Probability Theory and Stochastic Modelling;2017

4. Expectations of Random Sets;Theory of Random Sets;2017

5. Random Closed Sets and Capacity Functionals;Theory of Random Sets;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3