Abstract
Large deviation results are obtained for the normed limit of a supercritical multitype branching process. Starting from a single individual of type i, let L[i] be the normed limit of the branching process, and let be the minimum possible population size at generation k. If is bounded in k (bounded minimum growth), then we show that P(L[i] ≤ x) = P(L[i] = 0) + xαF*[i](x) + o(xα) as x → 0. If grows exponentially in k (exponential minimum growth), then we show that −log P(L[i] ≤ x) = x−β/(1−β) G*[i](x) + o (x−β/(1−β)) as x → 0. If the maximum family size is bounded, then −log P(L[i] > x) = xδ/(δ−1)H*[i](x) + o(xδ/(δ−1)) as x → ∞. Here α, β and δ are constants obtained from combinations of the minimum, maximum and mean growth rates, and F*, G* and H* are multiplicatively periodic functions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献