Tightness for Maxima of Generalized Branching Random Walks

Author:

Fang Ming

Abstract

We study generalized branching random walks on the real line R that allow time dependence and local dependence between siblings. Specifically, starting from one particle at time 0, the system evolves such that each particle lives for one unit amount of time, gives birth independently to a random number of offspring according to some branching law, and dies. The offspring from a single particle are assumed to move to new locations on R according to some joint displacement distribution; the branching laws and displacement distributions depend on time. At time n, Fn(·) is used to denote the distribution function of the position of the rightmost particle in generation n. Under appropriate tail assumptions on the branching laws and offspring displacement distributions, we prove that Fn(· - Med(Fn)) is tight in n, where Med(Fn) is the median of Fn. The main part of the argument is to demonstrate the exponential decay of the right tail 1 - Fn(· - Med(Fn)).

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Height of weighted recursive trees with sub-polynomially growing total weight;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2024-08-01

2. Right-most position of a last progeny modified time inhomogeneous branching random walk;Statistics & Probability Letters;2023-02

3. A simple backward construction of branching Brownian motion with large displacement and applications;Annales de l'Institut Henri Poincaré, Probabilités et Statistiques;2022-11-01

4. Maximal displacement of a supercritical branching random walk in a time-inhomogeneous random environment;Stochastic Processes and their Applications;2019-09

5. Maxima of branching random walks with piecewise constant variance;Brazilian Journal of Probability and Statistics;2018-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3