Author:
Hug Daniel,Last Günter,Weil Wolfgang
Abstract
Distance measurements are useful tools in stochastic geometry. For a Boolean modelZin ℝd, the classical contact distribution functions allow the estimation of important geometric parameters ofZ. In two previous papers, several types of generalized contact distributions have been investigated and applied to stationary and nonstationary Boolean models. Here, we consider random setsZwhich are generated as the union sets of Poisson processesXofk-flats,k∈ {0, …,d-1}, and study distances from a fixed point or a fixed convex body toZ. In addition, we also consider the distances from a given flat or a flag consisting of flats to the individual members ofXand investigate the associated process of nearest points in the flats ofX. In particular, we discuss to which extent the directional distribution ofXis determined by this point process. Some of our results are presented for more general stationary processes of flats.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献