Abstract
In this paper we consider stochastic recursive equations of sum type, , and of max type, , where Ai, bi, and b are random, (Xi) are independent, identically distributed copies of X, and denotes equality in distribution. Equations of these types typically characterize limits in the probabilistic analysis of algorithms, in combinatorial optimization problems, and in many other problems having a recursive structure. We develop some new contraction properties of minimal Ls-metrics which allow us to establish general existence and uniqueness results for solutions without imposing any moment conditions. As an application we obtain a one-to-one relationship between the set of solutions to the homogeneous equation and the set of solutions to the inhomogeneous equation, for sum- and max-type equations. We also give a stochastic interpretation of a recent transfer principle of Rösler from nonnegative solutions of sum type to those of max type, by means of random scaled Weibull distributions.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献