Author:
Tan Chin Hon,Hartman Joseph C.
Abstract
Sequential decision problems can often be modeled as Markov decision processes. Classical solution approaches assume that the parameters of the model are known. However, model parameters are usually estimated and uncertain in practice. As a result, managers are often interested in how estimation errors affect the optimal solution. In this paper we illustrate how sensitivity analysis can be performed directly for a Markov decision process with uncertain reward parameters using the Bellman equations. In particular, we consider problems involving (i) a single stationary parameter, (ii) multiple stationary parameters, and (iii) multiple nonstationary parameters. We illustrate the applicability of this work through a capacitated stochastic lot-sizing problem.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献