Author:
Kondratiev Yuri,Kozitsky Yuri,Pasurek Tanja
Abstract
Gibbs fields are constructed and studied which correspond to systems of real-valued spins (e.g. systems of interacting anharmonic oscillators) indexed by the vertices of unbounded degree graphs of a certain type, for which the Gaussian Gibbs fields need not be existing. In these graphs, the vertex degree growth is controlled by a summability requirement formulated with the help of a generalized Randić index. In particular, it is proven that the Gibbs fields obey uniform integrability estimates, which are then used in the study of the topological properties of the set of Gibbs fields. In the second part, a class of graphs is introduced in which the mentioned summability is obtained by assuming that the vertices of large degree are located at large distances from each other. This is a stronger version of the metric property employed in Bassalygo and Dobrushin (1986).
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献