Author:
Boxma Onno,Kella Offer,Perry David
Abstract
In this paper we generalize existing results for the steady-state distribution of growth-collapse processes with independent exponential intercollapse times to the case where they have a general distribution on the positive real line having a finite mean. In order to compute the moments of the stationary distribution, no further assumptions are needed. However, in order to compute the stationary distribution, the price that we are required to pay is the restriction of the collapse ratio distribution from a general distribution concentrated on the unit interval to minus-log-phase-type distributions. A random variable has such a distribution if the negative of its natural logarithm has a phase-type distribution. Thus, this family of distributions is dense in the family of all distributions concentrated on the unit interval. The approach is to first study a certain Markov-modulated shot noise process from which the steady-state distribution for the related growth-collapse model can be inferred via level crossing arguments.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Matrix calculations for moments of Markov processes;Advances in Applied Probability;2022-09-02
2. Moments of Markovian growth–collapse processes;Advances in Applied Probability;2022-06-14
3. Perpetuities;Probability and Its Applications;2016
4. The Cost of Shocks in Reserve Management;SSRN Electronic Journal;2014