Author:
Gleaton James U.,Lynch James D.
Abstract
The maximum-entropy formalism developed by E. T. Jaynes is applied to the breaking strain of a bundle of fibers of various cross-sectional areas. When the bundle is subjected to a tensile load, and it is assumed that Hooke's law applies up to the breaking strain of the fibers, it is proved that the survival strain distribution for a fiber in the bundle is restricted to a certain class consisting of generalizations of the log-logistic distribution. Since Jaynes's formalism is a generalization of statistical thermodynamics, parallels are drawn between concepts in thermodynamics and in the theory of inhomogeneous bundles of fibers. In particular, heat transfer corresponds to damage to the bundle in the form of broken fibers, and the negative reciprocal of the parameter corresponding to thermodynamic temperature is the resistance of the bundle to damage.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference17 articles.
1. Analytischer Beweis des zweiten Hauptsatzes der mechanischen Wärm etheorie aus den Sätzen über das Gleichgewicht der lebendigen Kraft;Boltzmann;Sitzungsber. Akad. Wiss. Math.-Natur. Klasse Wien,1871c
2. Über das Wärmegleichgewicht zwischen mehratomigen Gasmolekülen;Boltzmann;Sitzungsber. Akad. Wiss. Math.-Natur. Klasse Wien,1871a
3. Cumulative Damage Models for System Failure With Application to Carbon Fibers and Composites
4. Information Theory and Statistical Mechanics. II
5. Information Theory and Statistical Mechanics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献