Abstract
This paper revisits a general optimal stopping problem that often appears as a special case in some finance applications. The problem is essentially of the same form as the investment-timing problem of McDonald and Siegel (1986) in which the underlying processes are two correlated geometric Brownian motions (GBMs) with drifts less than the discount rate. By contrast, we attempt to analyze the underlying optimal stopping problem to its full generality without imposing any restriction on the drifts of the GBMs. By extending the first passage time approach of Xia and Zhou (2007) to the current context, we manage to obtain a complete and explicit characterization of the solution to the problem on all possible drift domains. Our analysis leads to a new and interesting observation that the underlying optimal stopping problem admits a two-sided optimal continuation region on some certain parameter domains.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference9 articles.
1. STOCK LOANS
2. Essentials of Stochastic Finance
3. Stochastic Differential Equations
4. The Value of Waiting to Invest
5. A free boundary problem for the heat equation arising from a problem in mathematical economics;McKean;Industrial Manag. Rev.,1965
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献