Author:
Guo Xianping,Hernández-Lerma Onésimo
Abstract
This paper is devoted to the study of two-person zero-sum games for continuous-time jump Markov processes with a discounted payoff criterion. The state and action spaces are all Polish spaces, the transition rates are allowed to be unbounded, and the payoff rates may have neither upper nor lower bounds. We give conditions on the game's primitive data under which the existence of a solution to the Shapley equation is ensured. Then, from the Shapley equation, we obtain the existence of the value of the game and of a pair of optimal stationary strategies using the extended infinitesimal operator associated with the transition function of a possibly nonhomogeneous continuous-time jump Markov process. We also provide a recursive way of computing (or at least approximating) the value of the game. Moreover, we present a ‘martingale characterization’ of a pair of optimal stationary strategies. Finally, we apply our results to a controlled birth and death system and a Schlögl first model, and then we use controlled Potlach processes to illustrate our conditions.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献