Abstract
We consider a stochastic model for the spread of a susceptible–infective–removed (SIR) epidemic among a closed, finite population, in which there are two types of severity of infectious individuals, namely mild and severe. The type of severity depends on the amount of infectious exposure an individual receives, in that infectives are always initially mild but may become severe if additionally exposed. Large-population properties of the model are derived. In particular, a coupling argument is used to provide a rigorous branching process approximation to the early stages of an epidemic, and an embedding argument is used to derive a strong law and an associated central limit theorem for the final outcome of an epidemic in the event of a major outbreak. The basic reproduction number, which determines whether or not a major outbreak can occur given few initial infectives, depends only on parameters of the mild infectious state, whereas the final outcome in the event of a major outbreak depends also on parameters of the severe state. Moreover, the limiting final size proportions need not even be continuous in the model parameters.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献