Transient Asymptotics of Lévy-Driven Queues

Author:

Dębicki Krzysztof,Es-Saghouani Abdelghafour,Mandjes Michel

Abstract

With (Qt)t denoting the stationary workload process in a queue fed by a Lévy input process (Xt)t, this paper focuses on the asymptotics of rare event probabilities of the type P(Q0 > pB, QTB > qB) for given positive numbers p and q, and a positive deterministic function TB. We first identify conditions under which the probability of interest is dominated by the ‘most demanding event’, in the sense that it is asymptotically equivalent to P(Q > max{p, q}B) for large B, where Q denotes the steady-state workload. These conditions essentially reduce to TB being sublinear (i.e. TB/B → 0 as B → ∞). A second condition is derived under which the probability of interest essentially ‘decouples’, in that it is asymptotically equivalent to P(Q > pB)P(Q > qB) for large B. For various models considered in the literature, this ‘decoupling condition’ reduces to requiring that TB is superlinear (i.e. TB / B → ∞ as B → ∞). This is not true for certain ‘heavy-tailed’ cases, for instance, the situations in which the Lévy input process corresponds to an α-stable process, or to a compound Poisson process with regularly varying job sizes, in which the ‘decoupling condition’ reduces to TB / B2 → ∞. For these input processes, we also establish the asymptotics of the probability under consideration for TB increasing superlinearly but subquadratically. We pay special attention to the case TB = RB for some R > 0; for light-tailed input, we derive intuitively appealing asymptotics, intensively relying on sample path large deviations results. The regimes obtained can be interpreted in terms of the most likely paths to overflow.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient Asymptotics;Universitext;2015

2. Stationary Workload Asymptotics;Universitext;2015

3. Lévy-driven queues;Surveys in Operations Research and Management Science;2012-01

4. On the infimum attained by a reflected Lévy process;Queueing Systems;2011-09-27

5. Simulation-Based Computation of the Workload Correlation Function in a Lévy-Driven Queue;Journal of Applied Probability;2011-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3