Author:
Eun Do Young,Shroff Ness B.
Abstract
We derive results that show the impact of aggregation in a queueing network. Our model consists of a two-stage queueing system where the first (upstream) queue serves many flows, of which a certain subset arrive at the second (downstream) queue. The downstream queue experiences arbitrary interfering traffic. In this setup, we prove that, as the number of flows being aggregated in the upstream queue increases, the overflow probability of the downstream queue converges uniformly in the buffer level to the overflow probability of a single queueing system obtained by simply removing the upstream queue in the original two-stage queueing system. We also provide the speed of convergence and show that it is at least exponentially fast. We then extend our results to non-i.i.d. traffic arrivals.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献