Abstract
In this paper we prove a conditional limit theorem for a critical Galton-Watson branching process {Zn; n ≥ 0} with offspring generating function s + (1 − s)L((1 − s)−1), where L(x) is slowly varying. In contrast to a well-known theorem of Slack (1968), (1972) we use a functional normalization, which gives an exponential limit. We also give an alternative proof of Sze's (1976) result on the asymptotic behavior of the nonextinction probability.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献