Author:
Grace Adam W.,Kroese Dirk P.,Sandmann Werner
Abstract
Many complex systems can be modeled via Markov jump processes. Applications include chemical reactions, population dynamics, and telecommunication networks. Rare-event estimation for such models can be difficult and is often computationally expensive, because typically many (or very long) paths of the Markov jump process need to be simulated in order to observe the rare event. We present a state-dependent importance sampling approach to this problem that is adaptive and uses Markov chain Monte Carlo to sample from the zero-variance importance sampling distribution. The method is applicable to a wide range of Markov jump processes and achieves high accuracy, while requiring only a small sample to obtain the importance parameters. We demonstrate its efficiency through benchmark examples in queueing theory and stochastic chemical kinetics.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献