Author:
Huckemann Stephan,Ziezold Herbert
Abstract
Classical principal component analysis on manifolds, for example on Kendall's shape spaces, is carried out in the tangent space of a Euclidean mean equipped with a Euclidean metric. We propose a method of principal component analysis for Riemannian manifolds based on geodesics of the intrinsic metric, and provide a numerical implementation in the case of spheres. This method allows us, for example, to compare principal component geodesics of different data samples. In order to determine principal component geodesics, we show that in general, owing to curvature, the principal component geodesics do not pass through the intrinsic mean. As a consequence, means other than the intrinsic mean are considered, allowing for several choices of definition of geodesic variance. In conclusion we apply our method to the space of planar triangular shapes and compare our findings with those of standard Euclidean principal component analysis.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献