Persistence and Equilibria of Branching Populations with Exponential Intensity

Author:

Kabluchko Zakhar

Abstract

We consider a system of independent branching random walks on R which start from a Poisson point process with intensity of the form eλ(du) = eudu, where λ ∈ R is chosen in such a way that the overall intensity of particles is preserved. Denote by χ the cluster distribution, and let φ be the log-Laplace transform of the intensity of χ. If λφ'(λ) > 0, we show that the system is persistent, meaning that the point process formed by the particles in the nth generation converges as n → ∞ to a non-trivial point process Πeλχ with intensity eλ. If λφ'(λ) < 0 then the branching population suffers local extinction, meaning that the limiting point process is empty. We characterize point processes on R which are cluster invariant with respect to the cluster distribution χ as mixtures of the point processes Πceλχ over c > 0 and λ ∈ Kst, where Kst = {λ ∈ R: φ(λ) = 0, λφ'(λ) > 0}.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference24 articles.

1. [20] Maillard P. (2011). A characterisation of superposable random measures. Preprint. Available at http://arxiv.org/{}abs/1102.1888v1.

2. [19] Madaule T. (2011). Convergence in law for the branching random walk seen from its tip. Preprint. Available at http://arxiv.org/abs/arXiv:1107.2543v2.

3. Conceptual Proofs of $L$ Log $L$ Criteria for Mean Behavior of Branching Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The fixed points of branching Brownian motion;Probability Theory and Related Fields;2022-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3