Author:
Adell José A.,Lekuona Alberto
Abstract
In this paper, we consider positive linear operators L representable in terms of stochastic processes Z having right-continuous non-decreasing paths. We introduce the equivalent notions of derived operator and derived process of order n of L and Z, respectively. When acting on absolutely continuous functions of order n, we obtain a Taylor's formula of the same order for such operators, thus extending to a positive linear operator setting the classical Taylor's formula for differentiable functions. It is also shown that the operators satisfying Taylor's formula are those which preserve generalized convexity of order n. We illustrate the preceding results by considering discrete time processes, counting and renewal processes, centred subordinators and the Yule birth process.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献