Approximate entropy for testing randomness

Author:

Rukhin Andrew L.

Abstract

This paper arose from interest in assessing the quality of random number generators. The problem of testing randomness of a string of binary bits produced by such a generator gained importance with the wide use of public key cryptography and the need for secure encryption algorithms. All such algorithms are based on a generator of (pseudo) random numbers; the testing of such generators for randomness became crucial for the communications industry where digital signatures and key management are vital for information processing.The concept of approximate entropy has been introduced in a series of papers by S. Pincus and co-authors. The corresponding statistic is designed to measure the degree of randomness of observed sequences. It is based on incremental contrasts of empirical entropies based on the frequencies of different patterns in the sequence. Sequences with large approximate entropy must have substantial fluctuation or irregularity. Alternatively, small values of this characteristic imply strong regularity, or lack of randomness, in a sequence. Pincus and Kalman (1997) evaluated approximate entropies for binary and decimal expansions of e, π, √2 and √3 with the surprising conclusion that the expansion of √3 demonstrated much less irregularity than that of π. Tractable small sample distributions are hardly available, and testing randomness is based, as a rule, on fairly long strings. Therefore, to have rigorous statistical tests of randomness based on this approximate entropy statistic, one needs the limiting distribution of this characteristic under the randomness assumption. Until now this distribution remained unknown and was thought to be difficult to obtain. To derive the limiting distribution of approximate entropy we modify its definition. It is shown that the approximate entropy as well as its modified version converges in distribution to a χ2-random variable. The P-values of approximate entropy test statistics for binary expansions of e, π and √3 are plotted. Although some of these values for √3 digits are small, they do not provide enough statistical significance against the randomness hypothesis.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3