Abstract
The main result of the paper is a refinement of Xia's (1997) bound on the Kantorovich distance between distributions of a Bernoulli point process and an approximating Poisson process. In particular, we show that the distance between distributions of a Bernoulli point process and the Poisson process with the same mean measure has the order of the total variation distance between the laws of the total masses of these processes.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献