Lumpings of Markov Chains, Entropy Rate Preservation, and Higher-Order Lumpability
-
Published:2014-12
Issue:4
Volume:51
Page:1114-1132
-
ISSN:0021-9002
-
Container-title:Journal of Applied Probability
-
language:en
-
Short-container-title:Journal of Applied Probability
Author:
Geiger Bernhard C.,Temmel Christoph
Abstract
A lumping of a Markov chain is a coordinatewise projection of the chain. We characterise the entropy rate preservation of a lumping of an aperiodic and irreducible Markov chain on a finite state space by the random growth rate of the cardinality of the realisable preimage of a finite-length trajectory of the lumped chain and by the information needed to reconstruct original trajectories from their lumped images. Both are purely combinatorial criteria, depending only on the transition graph of the Markov chain and the lumping function. A lumping is strongly k-lumpable, if and only if the lumped process is a kth-order Markov chain for each starting distribution of the original Markov chain. We characterise strong k-lumpability via tightness of stationary entropic bounds. In the sparse setting, we give sufficient conditions on the lumping to both preserve the entropy rate and be strongly k-lumpable.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献