Abstract
We solve the following three optimal stopping problems for different kinds of options, based on the Black-Scholes model of stock fluctuations. (i) The perpetual lookback American option for the running maximum of the stock price during the life of the option. This problem is more difficult than the closely related one for the Russian option, and we show that for a class of utility functions the free boundary is governed by a nonlinear ordinary differential equation. (ii) A new type of stock option, for a company, where the company provides a guaranteed minimum as an added incentive in case the market appreciation of the stock is low, thereby making the option more attractive to the employee. We show that the value of this option is given by solving a nonalgebraic equation. (iii) A new call option for the option buyer who is risk-averse and gets to choose, a priori, a fixed constant l as a ‘hedge’ on a possible downturn of the stock price, where the buyer gets the maximum of l and the price at any exercise time. We show that the optimal policy depends on the ratio of x/l, where x is the current stock price.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference12 articles.
1. On optimal stopping and free boundary problems
2. The Russian Option: Reduced Regret
3. Continuous Martingales and Brownian Motion
4. Appendix: a free boundary problem for the heat equation arising from a problem in mathematical economics;McKean;Indust. Management Rev.,1965
5. A Barrier Option of American Type
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献