Author:
Collins E. J.,McNamara J. M.
Abstract
We consider a problem similar in many respects to a finite horizon Markov decision process, except that the reward to the individual is a strictly concave functional of the distribution of the state of the individual at final time T. Reward structures such as these are of interest to biologists studying the fitness of different strategies in a fluctuating environment. The problem fails to satisfy the usual optimality equation and cannot be solved directly by dynamic programming. We establish equations characterising the optimal final distribution and an optimal policy π*. We show that in general π* will be a Markov randomised policy (or equivalently a mixture of Markov deterministic policies) and we develop an iterative, policy improvement based algorithm which converges to π*. We also consider an infinite population version of the problem, and show that the population cannot do better using a coordinated policy than by each individual independently following the individual optimal policy π*.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献