A threshold limit theorem for the stochastic logistic epidemic

Author:

Andersson Håkan,Djehiche Boualem

Abstract

The time until extinction for the closed SIS stochastic logistic epidemic model is investigated. We derive the asymptotic distribution for the extinction time as the population grows to infinity, under different initial conditions and for different values of the infection rate.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference12 articles.

1. Sojourn times and first passage times for birth-and-death processes;Zikun;Scientia Sinica,1980

2. On conditional passage time structure of birth-death processes

3. The duration of the closed stochastic epidemic

4. On the extinction of the S-I-S stochastic logistic epidemic;Kryscio;J. Appl. Prob.,1989

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large population asymptotics for a multitype stochastic SIS epidemic model in randomly switching environment;The Annals of Applied Probability;2024-06-01

2. Griffiths phase in a facilitated Rydberg gas at low temperatures;Physical Review Research;2024-01-16

3. Analysis of continuous-time Markovian ɛ -SIS epidemics on networks;Physical Review E;2022-05-09

4. On the Risk of Ruin in a SIS Type Epidemic;Methodology and Computing in Applied Probability;2022-01-08

5. Extinction time of the logistic process;Journal of Applied Probability;2021-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3