Abstract
Very little is known about the quantitative behaviour of dynamical systems with random excitation, unless the system is linear. Known techniques imply the resolution of parabolic partial differential equations (Fokker–Planck–Kolmogorov equation), which are degenerate and of high dimension and for which there is no effective known method of resolution. Therefore, users (physicists, mechanical engineers) concerned with such systems have had to design global linearization techniques, known as equivalent statistical linearization (Roberts and Spanos (1990)). So far, there has been no rigorous justification of these techniques, with the notable exception of the paper by Kozin (1987). In this contribution, using large deviation principles, several mathematically founded linearization methods are proposed. These principles use relative entropy, or Kullback information, of two probability measures, and Donsker–Varadhan entropy of a Gaussian measure relatively to a Markov kernel. The method of ‘true linearization’ (Roberts and Spanos (1990)) is justified.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献