Abstract
The present paper generalises some results for spectrally negative Lévy processes to the setting of Markov additive processes (MAPs). A prominent role is assumed by the first passage times, which will be determined in terms of their Laplace transforms. These have the form of a phase-type distribution, with a rate matrix that can be regarded as an inverse function of the cumulant matrix. A numerically stable iteration to compute this matrix is given. The theory is first developed for MAPs without positive jumps and then extended to include positive jumps having phase-type distributions. Numerical and analytical examples show agreement with existing results in special cases.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
57 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献