Optimal Choice of the Best Available Applicant in Full-Information Models

Author:

Tamaki Mitsushi

Abstract

The problem we consider here is a full-information best-choice problem in which n applicants appear sequentially, but each applicant refuses an offer independently of other applicants with known fixed probability 0≤q<1. The objective is to maximize the probability of choosing the best available applicant. Two models are distinguished according to when the availability can be ascertained; the availability is ascertained just after the arrival of the applicant (Model 1), whereas the availability can be ascertained only when an offer is made (Model 2). For Model 1, we can obtain the explicit expressions for the optimal stopping rule and the optimal probability for a given n. A remarkable feature of this model is that, asymptotically (i.e. n→∞), the optimal probability becomes insensitive to q and approaches 0.580 164. The planar Poisson process (PPP) model provides more insight into this phenomenon. For Model 2, the optimal stopping rule depends on the past history in a complicated way and seems to be intractable. We have not solved this model for a finite n but derive, via the PPP approach, a lower bound on the asymptotically optimal probability.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Reference16 articles.

1. A note on the dowry problem;Sakaguchi;Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs.,1973

2. Recognizing the Maximum of a Sequence

3. Best choice from the planar Poisson process

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust best choice problem;Mathematical Methods of Operations Research;2020-07-09

2. On the optimal stopping problems with monotone thresholds;Journal of Applied Probability;2015-12

3. On the optimal stopping problems with monotone thresholds;Journal of Applied Probability;2015-12

4. Sum the Multiplicative Odds to One and Stop;Journal of Applied Probability;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3