Lagrangian observations of homogeneous random environments

Author:

Zirbel Craig L.

Abstract

This article deals with the distribution of the view of a random environment as seen by an observer whose location at each moment is determined by the environment. The main application is in statistical fluid mechanics, where the environment consists of a random velocity field and the observer is a particle moving in the velocity field, possibly subject to molecular diffusion. Several results on such Lagrangian observations of the environment have appeared in the literature, beginning with the 1957 dissertation of J. L. Lumley. This article unites these results into a simple unified framework and rounds out the theory with new results in several directions. When the environment is homogeneous, the problem can be re-cast in terms of certain random mappings on the physical space that are based on the random location of the observer. If these mappings preserve the invariant measure on the physical space, then the view from the random location has the same distribution as the view from the origin. If these mappings satisfy the flow property and the environment is stationary, then the succession of Lagrangian observations over time forms a strictly stationary process. In particular, for motion in a homogeneous, stationary, and nondivergent velocity field, the Lagrangian velocity (the velocity of the particle) is strictly stationary, which was first observed by Lumley. In the compressible case, the distribution of a Lagrangian observation has a density with respect to the distribution of the view from the origin, and in some cases convergence in distribution of the Lagrangian observations as time tends to infinity can be shown.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference29 articles.

1. A kinematic analysis of polarized eddy fields using drifter data

2. Limit theorems for stochastic flows of diffeomorphisms of jump type

3. Lumley J. L. (1957). Some problems connected with the motion of small particles in turbulent fluid. Doctoral Thesis, The Johns Hopkins University, Baltimore, MD.

4. Random measures and their application to motion in an incompressible fluid

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3