Modeling growth stocks via birth-death processes

Author:

Kou S. C.,Kou S. G.

Abstract

The inability to predict the future growth rates and earnings of growth stocks (such as biotechnology and internet stocks) leads to the high volatility of share prices and difficulty in applying the traditional valuation methods. This paper attempts to demonstrate that the high volatility of share prices can nevertheless be used in building a model that leads to a particular cross-sectional size distribution. The model focuses on both transient and steady-state behavior of the market capitalization of the stock, which in turn is modeled as a birth-death process. Numerical illustrations of the cross-sectional size distribution are also presented.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Reference38 articles.

1. Linear growth, birth and death processes;Karlin;J. Math. Mech.,1958

2. Modelling Extremal Events

3. Markov Chains and Stochastic Stability

4. Zipf Distribution of U.S. Firm Sizes

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Birth and death processes in interactive random environments;Queueing Systems;2022-08-12

2. On the forward algorithm for stopping problems on continuous-time Markov chains;Journal of Applied Probability;2021-11-22

3. First-passage times and related moments for continuous-time birth–death chains;Ricerche di Matematica;2018-12-18

4. Environmental variability and mean-reverting processes;Discrete and Continuous Dynamical Systems - Series B;2016-08

5. A Structural Jump Threshold Framework for Credit Risk;SIAM Journal on Financial Mathematics;2016-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3