Affiliation:
1. University of Southern California Information Sciences Institute
2. University of Texas, Austin
Abstract
Venmo is a US-based mobile social payments platform. Each Venmo transaction requires a “payment note”, a brief memo. By default, these memos are visible to all other Venmo users. Using three data sets of Venmo transactions, which span 8 years and a total of 389 M transactions with over 22.5 M unique users, we quantify the extent of private data leaks from public transaction notes. To quantify the leaks, we develop a classification framework SENMO, that uses BERT and regular expressions to classify public transaction notes as sensitive or non-sensitive. We find that 41 M notes (10.5%) leak some sensitive information such as health condition, political orientation and drug/alcohol consumption involving 8.5 M (37.8%) users. We further find that users seek privacy by making their notes private, inconspicuous or cryptic. However, the large increase in Venmo’s user base means that the number of users whose privacy is publicly exposed has grown substantially. Finally, the privacy of a user who transacts with a group on Venmo can be reduced or eliminated through the actions of other users. We find that this happens to around half of Alcoholics Anonymous, gambling and biker gang group members. Our findings strongly suggest that public-by-default payment information puts many users at risk of unintended privacy leaks.
Publisher
Privacy Enhancing Technologies Symposium Advisory Board
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献