Moby: A Blackout-Resistant Anonymity Network for Mobile Devices

Author:

Pradeep Amogh1,Javaid Hira2,Williams Ryan2,Rault Antoine3,Choffnes David2,Le Blond Stevens3,Ford Bryan3

Affiliation:

1. Northeastern University & EPFL

2. Northeastern University

3. EPFL

Abstract

Internet blackouts are challenging environments for anonymity and censorship resistance. Existing popular anonymity networks (e.g., Freenet, I2P, Tor) rely on Internet connectivity to function, making them impracticable during such blackouts. In such a setting, mobile ad-hoc networks can provide connectivity, but prior communication protocols for ad-hoc networks are not designed for anonymity and attack resilience. We address this need by designing, implementing, and evaluating Moby, a blackout-resistant anonymity network for mobile devices. Moby provides end-to-end encryption, forward secrecy and sender-receiver anonymity. It features a bi-modal design of operation, using Internet connectivity when available and ad-hoc networks during blackouts. During periods of Internet connectivity, Moby functions as a regular messaging application and bootstraps information that is later used in the absence of Internet connectivity to achieve secure anonymous communications. Moby incorporates a model of trust based on users’ contact lists, and a trust establishment protocol that mitigates flooding attacks. We perform an empirically informed simulation-based study based on cellphone traces of 268,596 users over the span of a week for a large cellular provider to determine Moby’s feasibility and present our findings. Last, we implement and evaluate the Moby client as an Android app.

Publisher

Privacy Enhancing Technologies Symposium Advisory Board

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nebula: A Privacy-First Platform for Data Backhaul;2024 IEEE Symposium on Security and Privacy (SP);2024-05-19

2. ASMesh: Anonymous and Secure Messaging in Mesh Networks Using Stronger, Anonymous Double Ratchet;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3