gOTzilla: Efficient Disjunctive Zero-Knowledge Proofs from MPC in the Head, with Application to Proofs of Assets in Cryptocurrencies

Author:

Baldimtsi Foteini1,Chatzigiannis Panagiotis2,Gordon S. Dov1,Le Phi Hung1,McVicker Daniel1

Affiliation:

1. George Mason University

2. George Mason University - Visa Research

Abstract

We present gOTzilla, a protocol for interactive zero-knowledge proofs for very large disjunctive statements of the following format: given publicly known circuit C, and set of values Y = {y1 , . . . , yn }, prove knowledge of a witness x such that C(x) = y1 ∨ C(x) = y2 ∨ · · · ∨ C(x) = yn . These type of statements are extremely important for the proof of assets (PoA) problem in cryptocurrencies where a prover wants to prove the knowledge of a secret key sk that associates with the hash of a public key H(pk) posted on the ledger. We note that the size of n in popular cryptocurrencies, such as Bitcoin, is estimated to 80 million. For the construction of gOTzilla, we start by observing that if we restructure the proof statement to an equivalent of proving knowledge of (x, y) such that (C(x) = y) ∧ (y = y1 ∨ · · · ∨ y = yn )), then we can reduce the disjunction of equalities to 1-out-of-N oblivious transfer (OT). Our overall protocol is based on the MPC in the head (MPCitH) paradigm. We additionally provide a concrete, efficient extension of our protocol for the case where C combines algebraic and non-algebraic statements (which is the case in the PoA application). We achieve an asymptotic communication cost of O(log n) plus the proof size of the underlying MPCitH protocol. While related work has similar asymptotic complexity, our approach results in concrete performance improvements. We implement our protocol and provide benchmarks. Concretely, for a set of size 1 million entries, the total run-time of our protocol is 14.89 seconds using 48 threads, with 6.18 MB total communication, which is about 4x faster compared to the state of the art when considering a disjunctive statement with algebraic and non-algebraic elements.

Publisher

Privacy Enhancing Technologies Symposium Advisory Board

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3