Affiliation:
1. Beijing University of Posts and Telecommunications
2. University of Birmingham
Abstract
Voice over LTE (VoLTE) and Voice over NR (VoNR), are two similar technologies that have been widely deployed by operators to provide a better calling experience in LTE and 5G networks, respectively. The VoLTE/NR protocols rely on the security features of the underlying LTE/5G network to protect users' privacy such that nobody can monitor calls and learn details about call times, duration, and direction. In this paper, we introduce a new privacy attack which enables adversaries to analyse encrypted LTE/5G traffic and recover any VoLTE/NR call details. We achieve this by implementing a novel mobile-relay adversary which is able to remain undetected by using an improved physical layer parameter guessing procedure. This adversary facilitates the recovery of encrypted configuration messages exchanged between victim devices and the mobile network. We further propose an identity mapping method which enables our mobile-relay adversary to link a victim's network identifiers to the phone number efficiently, requiring a single VoLTE protocol message. We evaluate the real-world performance of our attacks using four modern commercial off-the-shelf phones and two representative, commercial network carriers. We collect over 60 hours of traffic between the phones and the mobile networks and execute 160 VoLTE calls, which we use to successfully identify patterns in the physical layer parameter allocation and in VoLTE traffic, respectively. Our real-world experiments show that our mobile-relay works as expected in all test cases, and the VoLTE activity logs recovered describe the actual communication with 100% accuracy. Finally, we show that we can link network identifiers such as International Mobile Subscriber Identities (IMSI), Subscriber Concealed Identifiers (SUCI) and/or Globally Unique Temporary Identifiers (GUTI) to phone numbers while remaining undetected by the victim.
Publisher
Privacy Enhancing Technologies Symposium Advisory Board
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献