Pika: Secure Computation using Function Secret Sharing over Rings

Author:

Wagh Sameer1

Affiliation:

1. Devron Corporation and UC Berkeley

Abstract

Machine learning algorithms crucially depend on non-linear mathematical functions such as division (for normalization), exponentiation (for softmax and sigmoid), tanh (as an activation function), logarithm (for crossentropy loss), and square root (for back-propagation of normalization layers). However, when machine learning is performed over secure computation, these protocols incur a large communication overhead and high round complexity. In this work, we propose new multi-party computation (MPC) protocols for such functions. Our protocols achieve constant round complexity (3 for semi-honest, 4 for malicious), an order of magnitude lower communication (54 − 121× lower than prior art), and high concrete efficiency (2−1163× faster runtime). We rely on recent advances in function secret sharing (FSS) to construct these protocols. Our contributions can be summarized as follows: (1) A constant round protocol to securely evaluate nonlinear functions such as division, exponentiation, logarithm, and tanh (in comparison to prior art which uses round complexity proportional to the rounds of iterative methods/required precision) with high accuracy. This construction largely follows prior work in look-up style secure computation. (2) Our main contribution is the extension of the above protocol to be secure in the presence of malicious adversaries in the honest majority setting. We provide a malicious sketching protocol for FSS schemes that works over rings and in order to prove its security, we extend (and prove) a corresponding form of SchwartzZippel lemma over rings. This is the first such extension of the lemma and it can be of independent interest in other domains of secure computation. (3) We implement our protocol and showcase order of magnitude improvements in runtime and communication. Given the low round complexity and substantially lower communication, our protocols achieve even better performance over network constrained environments such as WAN. Finally, we showcase how such functions can lead to scalability in machine learning. Note that techniques presented are applicable beyond the application of machine learning as the protocols effectively present an efficient 1-out-of-N oblivious transfer or an efficient private information retrieval protocol.

Publisher

Privacy Enhancing Technologies Symposium Advisory Board

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Compact Key Function Secret Sharing with Non-linear Decoder;IACR Communications in Cryptology;2024-07-08

2. Efficient Privacy-Preserving Approximation of the Kidney Exchange Problem;Proceedings of the 19th ACM Asia Conference on Computer and Communications Security;2024-07

3. Make Split, not Hijack: Preventing Feature-Space Hijacking Attacks in Split Learning;Proceedings of the 29th ACM Symposium on Access Control Models and Technologies;2024-06-24

4. Grotto: Screaming fast (2+1)-PC or ℤ2n via (2,2)-DPFs;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

5. TriFSS: Secure Trigonometric Function Evaluation via Function Secret Sharing;ICC 2023 - IEEE International Conference on Communications;2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3