Dynamic Volume-Hiding Encrypted Multi-Maps with Applications to Searchable Encryption

Author:

Amjad Ghous1,Patel Sarvar1,Persiano Giuseppe2,Yeo Kevin1,Yung Moti1

Affiliation:

1. Google

2. Università di Salerno

Abstract

We study encrypted storage schemes where a client outsources data to an untrusted third-party server (such as a cloud storage provider) while maintaining the ability to privately query and dynamically update the data. We focus on encrypted multi-maps (EMMs), a structured encryption (STE) scheme that stores pairs of label and value tuples. EMMs allow queries on labels and return the associated value tuple. As responses are variable-length, EMMs are subject to volume leakage attacks introduced by Kellaris et al. [CCS'16]. To prevent these attacks, volume-hiding EMMs were introduced by Kamara and Moataz [Eurocrypt'19] that hide the label volumes (i.e., the value tuple lengths). As our main contribution, we present the first fully dynamic volume-hiding EMMs that are both asymptotically and concretely efficient. Furthermore, they are simultaneously forward and backward private which are the de-facto standard security notions for dynamic STE schemes. Additionally, we implement our schemes to showcase their concrete efficiency. Our experimental evaluations show that our constructions are able to add dynamicity with minimal to no additional cost compared to the prior best static volume-hiding schemes of Patel et al. [CCS'19].

Publisher

Privacy Enhancing Technologies Symposium Advisory Board

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leakage-Abuse Attacks Against Forward and Backward Private Searchable Symmetric Encryption;Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security;2023-11-15

2. Conjunctive Searchable Symmetric Encryption from Hard Lattices;2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P);2023-07

3. Limits of Breach-Resistant and Snapshot-Oblivious RAMs;Advances in Cryptology – CRYPTO 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3