The effects of tillage practices on water regime of soybean (Glycine maxL.)
-
Published:2022-12-30
Issue:2
Volume:9
Page:145-154
-
ISSN:2064-9479
-
Container-title:Columella : Journal of Agricultural and Environmental Sciences
-
language:
-
Short-container-title:Columella
Author:
Bozóki BoglárkaORCID, Kovács Péter GergőORCID, Birkás Márta, Kende ZoltánORCID, Gyuricza Csaba
Abstract
Continuous world population growth imposes the need to produce higher-quality food. Due to the high content of valuable protein and high concentration of carbohydrates, vitamins and minerals, soybean (Glycine max L.) is one of the most essential leguminous and oilseed crop that contributes to human alimentation and animal nutrition. This study assesses the possible impacts of soybean seedling development and seeds’ quality indicators correlate to water supply aboveground and in the root zone. The level of water management is crucial in and out of the growing season; however, the increase in temperature may adversely affect climatic conditions. As a consequence of water contained in soil, leguminous crops can improve soil texture and the capacity of minerals if admissible water is available for the crop. Soil tillage is cardinal for agricultural water management; by practising proper tillage continuously, soil properties can increase, and exposedness can decrease in the long term.
Subject
Pharmacology (medical),Complementary and alternative medicine,Pharmaceutical Science
Reference69 articles.
1. Aliverdi, A., Karami, S., & Hamami, H. (2021). The Effect of Irrigation with Magnetized Water on the Symbiosis Between Soybean and Rhizobium. Journal of Water and Soil 35(1), 95-106. doi: https://doi.org/10.22067/jsw.2021.14972.0 2. Aminah, A., Djufry, F., Rauf, A. W., Saida, S., Palad, M. S., & Salim, S. (2021). Effectiveness of Irrigation Methods and Time of Providing Water in Maintaining Soil Classification for Increasing Soybean Production. AGRIVITA Journal of Agricultural Science 43(3), 627-643. doi: https://doi.org/10.17503/agrivita.v43i3.2975 3. Anda, A., Soós, G., Menyhárt, L., Kucserka, T., & Simon, B. (2020). Yield features of two soybean varieties under different water supplies and field conditions. Field Crops Research 245(1), 107673. doi: https://doi.org/10.1016/j.fcr.2019.107673 4. Arnell, N. W., van Vuuren, D. P., & Isaac, M. (2011). The implications of climate policy for the impacts of climate change on global water resources. Global Environmental Change 21(2), 592-603. doi: https://doi.org/10.1016/j.gloenvcha.2011.01.015 5. Bastidas, A. M., Setiyono, T. D., Dobermann, A., Cassman, K. G., Elmore, R. W., Graef, G. L., & Specht, J. E. (2008). Soybean sowing date: The vegetative, reproductive, and agronomic impacts. Crop Science 48(2), 727-740. doi: https://doi.org/10.2135/cropsci2006.05.0292
|
|