Kinetics and Mechanisms of Mammalian Heme Peroxidase Reactions

Author:

Dunford H. Brian1

Affiliation:

1. Emeritus Professor of Biophysical Chemistry, Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 Current address: 1119 Pecan Lake Court, Stillwater, OK, USA 74074-1181 Phone/Fax 405-624-3322.

Abstract

The kinetics and mechanism of action of the most intensively studied mammalian peroxidases, myeloperoxidase and prostaglandin H synthase are critically reviewed. Evidence against currently favored mechanisms is presented. It is shown that myeloperoxidase has a strong defence mechanism against free hypochlorous acid, commonly thought to be its principal product in its bactericidal activity. Rather, after its two-electron oxidation of chloride ion, myeloperoxidase rapidly converts it into an enzyme-bound chlorinating intermediate, most likely a chlorinated distal imidazole ring. This species chlorinates taurine which may either be a transfer agent of Cl+ to other species or may act directly in attack on invading microorganisms. The currently favored mechanism of action of prostaglandin H synthase-1 is a branching chain mechanism in which Compound I is converted into a species containing a tyrosyl radical on the opposite side of the enzyme. Once the tyrosyl radical is formed it converts arachidonic acid into a peroxide in a cyclooxygenase reaction, independent of the peroxidase activity. This mechanism cannot explain the enhancing effect of small free radical scavengers, nor the fact that peroxidase activity continues unabated while the cyclooxygenase reaction is proceeding, nor the 2: 1 ratio of small free radical scavenger to arachidonic acid consumption. A tightly coupling of peroxidase and cycloxygenase reactions appears to be the steady state mechanism, and the branching chain mechanism, if it occurs, is confined to a burst transient state phase.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3