Utilisation of Biochar and Superabsorbent Polymers for Soil Amendment

Author:

Ekebafe M.O.1,Ekebafe L.O.2,Maliki M.3

Affiliation:

1. Chemistry Division, Nigerian Institute for Oil Palm Research, P.M.B. 1030, Benin City, Nigeria

2. Polymer Technology Department, Auchi Polytechnic, P.M.B. 13, Auchi, Nigeria

3. Department of Science Laboratory Technology, Edo State Institute of Technology and Management, Usen, Edo State, Nigeria

Abstract

The application of superabsorbent polymers (SAPs) and/or biochars to stressed lands offer solutions to several critical ecological, energy and economic challenges posed by degraded lands due to human activities. These substances are like, ‘artificial humus’ as they are hydrophilic and contain carboxylic groups (SAPs) which enable them to bind cations and water, and sequester carbon from air to reverse global warming (biochars). Several research studies using these substances point to their ability to increase the plant-available water in the soil which enables the plants to survive longer with water shortage, increase soil fertility and agricultural yields, improve soil structure, aeration and water penetration, reduce use of synthetic fertilisers and pesticides, reduce nitrous oxide and methane emission from soil, reduce nitrate and farm chemicals leaching into watersheds, convert green and brown wastes into valuable resources, and reduce the evapotranspiration rate of the plants. SAPs and biochars induce a significantly higher growth rate in plants; they bind heavy metals and mitigate their action on plants as well as mitigate the effects of salinity. This paper reviews what is known about these claims and considers the wider environmental implications of the adoption of these processess. The intention is not just to summarise the current knowledge but also to identify gaps that require further research.

Publisher

SAGE Publications

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3