Degradation Studies of Polyurethanes Based on Vegetable Oils. Part 2. Thermal Degradation and Materials Properties

Author:

Mohd-Rus Anika Z.1,Kemp Terence J.2,Clark Andrew J.2

Affiliation:

1. University Tun Hussein Onn Malaysia, 86400 Parit Raju, Batu Pahat, Johor, Malaysia

2. Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK

Abstract

Polyurethanes (PUs), produced by cross-linking with a di-isocyanate hydroxylated vegetable oils (rapeseed and sunflower), have been examined from the viewpoints of their thermal degradation and their materials properties, and how both of these aspects are influenced both by the addition of TiO2 filler and by UV irradiation. The thermal decomposition of the PUs was investigated using thermal gravimetric analysis (TGA) and IR spectroscopy: the decomposition of a foam of the PU based on rapeseed oil showed complex kinetics, being apparently single-stage and of the first order at 973 K but with at least two separate stages at other temperatures. Thermolysis of PUs as films resulted in the production of carbonyl groups ( v 1793 cm−1) suggesting formation of an acid anhydride. Pyrolysis in vacuo produced volatiles which could be separated and examined by IR and NMR spectroscopy. Reaction mechanisms for the thermal decomposition of the PUs are proposed. The materials properties of the PUs, with and without TiO2 filler, have been examined by differential scanning calorimetry (DSC), dynamical mechanical thermal analysis (DMTA), tensile testing and measurement of scratch resistance and Shore D hardness. Addition of TiO2 improves systematically the scratch resistance and hardness of the PUs, but the glass transition temperature Tg showed a more complicated dependence on the TiO2 loading, initially falling and then increasing. Prolonged UV irradiation of TiO2-loaded samples increased the value of Tg at all loadings, suggesting increased levels of cross-linking on irradiation. The most dramatic effect of adding TiO2 was on the shape of the stress-strain curves: at 10% loading clear ‘soft-but-tough’ behaviour is evident. The values of tan δ and the storage modulus are also strongly affected by addition of TiO2, with and without UV-irradiation. From the viewpoint of utilisation of these PUs, their thermal stability up to 350°C and the beneficial effects of adding TiO2 make them promising materials.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3