A joint experimental and theoretical study on ZnO nanocomposites synthesised by a liquid deposition method

Author:

Mohaghegh N.1,Zeidabadi-nejad L.2,Tasviri M.3,Dehestani M.2,Haqgu M.4,Gholami M.R.1

Affiliation:

1. Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, Iran

2. Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran

3. Department of Chemistry, Shahid Beheshti University, Evin, PO Box 19839-63113, Tehran, Iran

4. Department of Chemistry, Payame Noor University (PNU), PO Box 19395-3697, Tehran, Iran

Abstract

ZnO was grown on mordenite zeolite, activated carbon and alumina substrates by a liquid deposition method. The photocatalytic activity of the synthesised samples was elucidated using the photodegradation of Acid Blue 92 (AB92) dyes as a test pollutant under UV light irradiation. Supports play a key role in AB92 photodegradation and significantly improve the photocatalytic activity of ZnO. Different supports form additional transport channels and provide an effective pathway for the charge carriers. The supports effectively construct porous structures with more active sites. Hence, the higher photocatalytic activity of supported catalysts is attributed to the large surface area and charge carrier separation. Bader's AIM theory showed that the strength and nature of intermolecular interactions between ZnO and the various supports is different. All geometry structures were optimised with B3LYP/6-31g (d) level theory. The performed local reactivity descriptors determined the reactive sites in molecules, demonstrating the mechanism for the enhanced photocatalytic activity of the composites. Both experimental and theoretical results confirm that the insertion of ZnO nanoparticles on the supports enhances electron transfer between ZnO and the catalyst surface, thus inhibiting charge recombination. The highest photocatalytic activity was observed for ZnO/MOR nanocomposite due to its high surface area, unique structure of MOR and photonic efficiency.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3