Kinetic Modelling of Propane Dehydrogenation over a Pt–Sn/hierarchical SAPO-34 Zeolite Catalyst, Including Catalyst Deactivation

Author:

Komasi Milad1,Fatemi Shohreh1,Mousavi Seyed Hesam1

Affiliation:

1. School of Chemical Engineering, College of Engineering, University of Tehran, PO Box 11365 4563, Tehran, Iran

Abstract

Pt–Sn/hierarchical SAPO-34 was synthesised and kinetically modelled as an efficient and selective catalyst for propylene production through propane dehydrogenation. The kinetics of the reaction network were studied in an integral fixed-bed reactor at three temperatures of 550, 600 and 650 °C and weight hourly space velocities of 4 and 8 h−1 with a feed containing hydrogen and propane with relative molar ratios of 0.2, 0.5 and 0.8, at normal pressure. The experiments were performed in accordance with the full factorial experimental design. The kinetic models were constructed on the basis of different mechanisms and various deactivation models. The kinetics and deactivation parameters were simultaneously predicted and optimised using genetic algorithm optimisation. It was further proven that the Langmuir–Hinshelwood model can well predict propane dehydrogenation kinetics through lumping together all the possible dehydrogenation steps and also by assuming the surface reaction as the rate-determining step. A coke formation kinetic model has also shown appropriate results, confirming the experimental data by equal consideration of both monolayer and multilayer coke deposition kinetic orders and an exponential deactivation model.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3