Theoretical Investigation of the Kinetic Effect of the 1-Ethylpyridinium Trifluoroacetate Ionic Liquid in the Acceleration of Diels–Alder Reactions of Isoprene with Acrylic Acid and Acrylonitrile

Author:

Chemouri Hafida12,Mekelleche Sidi Mohamed1

Affiliation:

1. Laboratory of Applied Thermodynamics and Molecular Modelling N° 53, Department of Chemistry, Faculty of Science, University A. Belkaïd, BP 119, Tlemcen, 13000, Algeria

2. Preparing School in Sciences and Techniques of Tlemcen, BP 165 RP Bel Horizon, 13000, Tlemcen, Algeria

Abstract

The mechanism, the regioselectivity, the stereoselectivity and the kinetics of Diels–Alder reactions of isoprene with acrylic acid and acrylonitrile have been studied, at the B3PW91/6-31G(d,p) level of theory, both in the gas phase and in the presence of organic [dichloromethane (DCM)] and ionic liquid [1-ethylpyridinium trifluoroacetate (EPTFA)] solvents. Intrinsic reaction coordinate calculations show that these reactions take place through an asynchronous concerted mechanism leading to the endo para cycloadducts as the major products in the gas phase and to the exo para cycloadducts as the major products both in organic and in ionic liquid solvents. The explicit solvation model involving the coordination of one molecule of the solvent with the dienophiles shows a considerable decrease of the activation energy when passing from DCM to EPTFA. The enhancement of these cycloaddition reactions can be explained by the strong hydrogen bonding created between the ion pair of the ionic liquid and the oxygen atom of the dienophile reagents. Moreover, density functional theory-based reactivity indices also show an increase of the reaction polarity and consequently of the reaction rate, when replacing DCM solvent by EPTFA solvent. The results obtained give evidence that the ionic liquid EPTFA is an excellent solvent for Diels–Alder reactions in comparison with conventional organic solvents.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3