Catalytic Capacity of Diaza-Crown Ether Lanthanum Complexes with Varied Ligands for Phosphate Ester Hydrolysis in Different Media

Author:

Xie Jia-qing1,Zhang Ya2,Cai Shu-lan3,Li Fang-zhen1,Feng Fa-mei3

Affiliation:

1. College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, P.R. China

2. Chongqing Environmental Monitoring Center, Chongqing 401147, P.R. China

3. College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, P.R. China

Abstract

Two diaza-crown ether compounds, 1,4,10,13-tetraoxa-7,16-diazacyclooctadecane (L0) and its derivative with double acetamide side arms 2,2'-(1,4,10,13-teteaoxa-7,16-diazacyclooctadecane-7,16-diyl)diacetamide (L), and the corresponding two lanthanum complexes were synthesised and characterised. The catalytic capacity of the lanthanum complexes was investigated for the hydrolysis of bis(4-nitrophenyl) phosphate ester (BNPP) in aqueous solution and in CTAB micelles. Kinetic studies show that the catalytic efficiency of complex LaL is obviously higher than that of complex LaL0, and introducing acetamide into the ring of the diaza-crown ether can improve the catalytic ability of the complexes for BNPP hydrolysis. A rate enhancement of about two times was observed for the complex–micelle in contrast with the complex–water system for BNPP catalytic hydrolysis. The optimal pH for the catalytic reaction in the two kinds of media systems show an approximately 0.4 pH unit difference. The two complexes possess higher thermostability, and are more stable in the micelle than in aqueous solution. Based on the results and their analysis, a catalytic mechanism with cooperation of acetamide is proposed.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3