Affiliation:
1. Department of Physical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
Abstract
The decomposition processes and reactivity of C4F90CH2O• radical formed from C4F90CH3 (HFE-7100) have been studied by density function theory computational methods. All calculations were performed at B3LYP and mPW1PW91 levels of theory with the 6-311G(d,p) basis set. The calculated barrier heights were further improved by QCISD(T)/6-31G(d)//MP2/6-31G(d) methodology to obtain better rate constants. Five possible pathways were investigated: reaction with O2, reaction with OH radical, C-O bond dissociation, release of H radical and finally rearrangement of the radical and then C-O bond cleavage with energy barriers of 6.35 (6.09) [12.12], 12.85 (16.87) [7.51], 17.05 (21.77) [28.34], 20.3 (20.75) [18.13], 32.60 (31.50) [32.63] and 16.07 (18.73) [20.04] kcal mol−1, respectively (the values in the parentheses for mPW1PW91 and in the brackets for the QCISD(T) method). Rate constants were calculated by utilising canonical transition state theory in the temperature range of 200–400 K and 1 atm pressure, and Arrhenius diagrams were plotted. The results showed that H elimination and H abstraction pathways are dominant for degradation of C4F90CH2O• radical in the atmosphere. A smooth transition from the reactants to products on the corresponding potential energy surface was confirmed by intrinsic reaction coordinate calculations.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献