A Review on Reactions of Polycyclic Aromatic Hydrocarbons with the Most Abundant Atmospheric Chemical Fragments: Theoretical and Experimental Data

Author:

Nayebzadeh Maryam1,Vahedpour Morteza1

Affiliation:

1. Department of Chemistry, University of Zanjan, PO Box 45371-38791, Zanjan, Iran

Abstract

Aerosols are ubiquitous in the atmosphere and have strong effects on climate and public health due to the importance of reactions of polycyclic aromatic hydrocarbon (PAH) compounds in air. Over the last decade, study of the reactions of PAHs and their derivatives in the atmosphere has become a key topic to find an effective way to decrease the impact of this spontaneous reaction and so reduce air pollution. This article aims to pool the majority of research on the reactions of PAHs with atmospheric agents such as oxygen, hydrogen and ozone and compare the theoretical and experimental results. In examining theoretical research, the number of aromatic rings is very important in calculating the rate constants and determining the main pathway of the reaction. So, while there are weak theoretical data, several papers issued in this field have concurred with key experimental results. For reactants with more than six aromatic rings, small basis sets have good conformity with experimental outcomes. Due to the abundance of OH in the atmosphere, much research has been done to find the best reaction pathway and calculate the associated rate constants experimentally and theoretically. In future, the opportunity exists for new researchers to detect the main intermediates, most important pathways, rate constants and the products of reactions with more than six aromatic rings and to detect PAHs in a dense atmosphere. Product identification will help to reduce air pollution.

Publisher

SAGE Publications

Subject

Physical and Theoretical Chemistry

Reference100 articles.

1. A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation

2. GelboinH. (1976) In: Free radicals in biology, Vol. 1, pp. 45–70. Academic Press, New York.

3. ConnellD. W. (1997) Basic concepts of environmental chemistry, pp. 205–217. CRC-Press.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3