Extracellular Sensors and Extracellular Alarmones, Which Permit Cross-Talk between Organisms, Determine the levels of Alkali Tolerance and Trigger Alkali-Induced Acid Sensitivity in Escherichia Coli

Author:

Rowbury Robin J.1,Goodson Margaret1

Affiliation:

1. University College London

Abstract

For several stress responses in Escherichia coli, switching on involves conversion by the stress of an extracellular stress sensor (an extracellular sensing component, ESC) to an extracellular induction component (EIC), the latter functioning as an alarmone and inducing the response. The aim of this study was to establish whether alkali tolerance induction at pH 9.0, alkali sensitisation induced at pH 5.5 and the acid sensitisation induced at pH 9.0 involve sensing of pH changes by ESCs. The techniques involved made use of studies with cell-free culture filtrates. With respect to the inducible responses under test, these filtrates were prepared either from induced or uninduced cultures and filtrates from uninduced cultures were also activated in vitro, by the pH stress, in the absence of bacteria. Tests were then made to examine whether EICs (known to be needed for all these systems) are formed by activation, at the appropriate pH values, of filtrates from pH 7.0-grown cultures (i.e. uninduced culture filtrates); appearance of an EIC on activation would indicate the presence in the uninduced culture filtrate of an ESC. The studies showed that all three systems use ESCs to detect pH changes. Tests involving attempted enzymic and physical inactivation of the ESCs, and attempted removal of the ESCs by dialysis, showed that the ESC involved in alkali sensitisation is a small very heat-resistant protein. Strikingly, protease only partially inactivated the ESCs needed for alkali tolerance induction and for acid sensitisation; each system may be complex, involving both protein and non-protein (RNA?) ESCs, although other explanations are possible. It was also established that appropriate killed cultures can induce all three responses when incubated with pH 7.0-grown living cultures. The occurrence of ESC/EIC pairs for these three responses has led to the evolution of early warning systems for each, the diffusibility of the EICs, and their interaction with non-producers, allowing them to act pheromonally, inducing sensitive organisms to stress tolerance, prior to exposure to stressor.

Publisher

SAGE Publications

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3