Factors driving bumble bee (Hymenoptera: Apidae: Bombus) and butterfly (Lepidoptera: Rhopalocera) use of sheared shrubland and young forest communities of the western Great Lakes

Author:

Keele Emma C1ORCID,McNeil Darin J2,Duchamp Joseph E1,Larkin Jeffery L13

Affiliation:

1. Department of Biology, Indiana University of Pennsylvania , Indiana, PA 15701 , USA

2. Department of Forestry and Natural Resources, University of Kentucky , Lexington, KY 40506 , USA

3. American Bird Conservancy , The Plains, VA 20198 , USA

Abstract

Abstract In the northern Great Lakes region, the creation and maintenance of early-successional woody communities as wildlife habitat have increasingly become a conservation priority. The extent to which insect pollinators use these systems remains largely anecdotal. In summer (June–August) of 2021, we surveyed 49 early-successional sites in the western Great Lakes region treated with either shrub-shearing or silviculture (young forest) for bumble bees, butterflies, and habitat components (i.e., structural vegetation and floral resources). Hierarchical distance models predicted pollinator densities (λ^) to be, on average, λ^ = 84 bumble bees/ha and λ^ = 102 butterflies/ha. Although sheared shrubland and young forest communities supported comparable densities of bumble bees and butterflies, density was not equal across all sites. At the microhabitat scale, butterfly density and morphospecies richness were negatively associated with tall shrub cover and butterfly morphospecies richness (but not density) was driven by floral richness. Similarly, bumble bee density was positively associated with metrics of floral resources, underscoring the importance of blooming plants within these woody systems. Landscape covariates explained variation in butterfly density/richness but not bumble bee density. Ultimately, our results demonstrate that blooming plant abundance is an important driver of bumble bee and butterfly densities within these managed early-successional communities. Because early-successional woody communities are dynamic and their herbaceous openings are ephemeral, routine management would ensure that a variety of successional conditions exist on the landscape to meet the needs of bumble bees, butterflies, and potentially other insect pollinators.

Funder

Department of Agriculture Natural Resources Conservation Service

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference105 articles.

1. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA;Abrams,2008

2. Differential responses of bumblebees and diurnal Lepidoptera to vegetation succession in long-term set-aside;Alanen,2011

3. Year-to-year variation in the topology of a plant-pollinator interaction network;Alarcón;Oikos,2008

4. Uninformative parameters and model selection using Akaike’s information criterion;Arnold,2010

5. Prescribed burning to restore mixed-oak communities in southern Ohio: effects on breeding-bird populations;Artman,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3