Perturbation of the peptidoglycan network and utilization of the signal recognition particle-dependent pathway enhances the extracellular production of a truncational mutant of CelA in Escherichia coli

Author:

Kang Tae-Gu1,Hong Seok-Hyun1,Jeon Gi-Beom1,Yang Yung-Hun23,Kim Sun-Ki1

Affiliation:

1. Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea

2. Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

3. Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea

Abstract

Abstract Caldicellulosiruptor bescii is the most thermophilic, cellulolytic bacterium known and has the native ability to utilize unpretreated plant biomass. Cellulase A (CelA) is the most abundant enzyme in the exoproteome of C. bescii and is primarily responsible for its cellulolytic ability. CelA contains a family 9 glycoside hydrolase and a family 48 glycoside hydrolase connected by linker regions and three carbohydrate-binding domains. A truncated version of the enzyme (TM1) containing only the endoglucanase domain is thermostable and actively degrades crystalline cellulose. A catalytically active TM1 was successfully produced via the attachment of the PelB signal peptide (P-TM1), which mediates post-translational secretion via the SecB-dependent translocation pathway. We sought to enhance the extracellular secretion of TM1 using an alternative pathway, the signal recognition particle (SRP)-dependent translocation pathway. The co-translational extracellular secretion of TM1 via the SRP pathway (D-TM1) resulted in a specific activity that was 4.9 times higher than that associated with P-TM1 overexpression. In batch fermentations, the recombinant Escherichia coli overexpressing D-TM1 produced 1.86 ± 0.06 U/ml of TM1 in the culture medium, showing a specific activity of 1.25 ± 0.05 U/mg cell, 2.7- and 3.7-fold higher than the corresponding values of the strain overexpressing P-TM1. We suggest that the TM1 secretion system developed in this study can be applied to enhance the capacity of E. coli as a microbial cell factory for the extracellular secretion of this as well as a variety proteins important for commercial production.

Funder

National Research Foundation of Korea

Ministry of Science, ICT and Future Planning

Rural Development Administration

Chung-Ang University

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3