Rewiring the microbial metabolic network for efficient utilization of mixed carbon sources

Author:

An Ning1,Chen Xin1,Sheng Huakang1,Wang Jia1,Sun Xinxiao1,Yan Yajun2,Shen Xiaolin1,Yuan Qipeng1

Affiliation:

1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA

Abstract

Abstract Carbon sources represent the most dominant cost factor in the industrial biomanufacturing of products. Thus, it has attracted much attention to seek cheap and renewable feedstocks, such as lignocellulose, crude glycerol, methanol, and carbon dioxide, for biosynthesis of value-added compounds. Co-utilization of these carbon sources by microorganisms not only can reduce the production cost but also serves as a promising approach to improve the carbon yield. However, co-utilization of mixed carbon sources usually suffers from a low utilization rate. In the past few years, the development of metabolic engineering strategies to enhance carbon source co-utilization efficiency by inactivation of carbon catabolite repression has made significant progress. In this article, we provide informative and comprehensive insights into the co-utilization of two or more carbon sources including glucose, xylose, arabinose, glycerol, and C1 compounds, and we put our focus on parallel utilization, synergetic utilization, and complementary utilization of different carbon sources. Our goal is not only to summarize strategies of co-utilization of carbon sources, but also to discuss how to improve the carbon yield and the titer of target products.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for Central Universities

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,Biotechnology,Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3